Real-time error controlled adaptive mesh refinement: Application to needle insertion simulation

Huu Phuoc Bui, Satyendra Tomar, Rémi Bessard-Duparc, Hadrien Courtecuisse, Stéphane Cotin, Stéphane Bordas

Abstract

This paper presents the first real-time discretisation-error-driven adaptive finite element approach for computational elasticity problems involving strain localisation. We propose a hexahedron-based finite element method combined with local oct-tree h-refinement, driven by a posteriori error estimation, for simulating soft tissue deformation. This enables to control the local error and global error level in the mechanical fields during the simulation. The local error level is used to refine the mesh only where it is needed, while maintaining a coarser mesh elsewhere. We investigate the convergence of the algorithm on academic examples, and demonstrate its practical usability on a percutaneous procedure involving needle insertion in a liver. For the latter case, we compare the force displacement curves obtained from the proposed adaptive algorithm with that obtained from a uniform refinement approach.

Keywords: Finite element method, real-time error estimate, adaptive refinement, constraint-based interaction.

Contents

1 Introduction 2
 1.1 Motivation ... 2
 1.2 Error in numerical simulations 2
 1.3 Simulation of percutaneous operations 3

2 Model and discretization 4
 2.1 Problem statement .. 4
 2.2 Spatial and temporal discretization 6
 2.2.1 Space discretization 6
 2.2.2 Time discretization 7
 2.3 Constraint enforcement for needle-tissue interaction 8

3 Error estimate and adaptive refinement 8
 3.1 Zienkiewicz-Zhu error estimate 8
 3.2 Element marking strategy 9
 3.3 Template-based adaptive h-refinement 10
 3.4 T-junction handling ... 10

4 Needle-tissue interaction algorithm 11
1. Introduction

1.1. Motivation

Real-time simulations are becoming increasingly common for various applications, from geometric design [1, 2] to medical simulation [3]. Our focus is on real-time simulation of the interaction of a surgeon or interventional radiologist with deformable organs. Such simulations are useful to both, help surgeons train, rehearse complex operations or/and to guide them during the intervention. In time, reliable simulations could help control robotic surgeons.

The problem is usually solved by finite element method (FEM) [4] or meshless/meshfree methods [5], which are used to discretise the equilibrium equations. It is usually uneconomical or prohibitively expensive to use a fixed mesh for such simulations. Indeed, coarse meshes are sufficient to reproduce “smooth” behaviour, whereas “non-smooth” behaviour such as singularities, boundary layers or stress concentrations require a finer mesh. Adequate approaches are thus needed to refine the discretisation in these areas.

Yet, existing numerical methods used for such problems use either a fixed discretisation (finite element mesh, meshfree point cloud, reduced order method), or adapt the mesh using heuristics [6, 7]. To our knowledge, no approach is currently able to adapt the finite element mesh based on rational a posteriori error estimates [8].

Our objective is thus to devise a robust and fast approach to local remeshing for surgical simulation. To ensure that the approach can be used in clinical practice, the method should be robust enough to deal, as realistically as possible, with the interaction of surgical tools with the organ, and fast enough for real-time simulations. The approach should also lead to an improved convergence so that an “economical” mesh is obtained at each time step. The final goal is to achieve optimal convergence and the most economical mesh, which will be studied in our future work.

In this paper, we propose and benchmark a local mesh refinement and coarsening approach based on the estimation of the discretisation error incurred by FEM in the solution of a corotational model used to represent soft tissues. The general ideas presented here can be used directly in geometric design based on deformable models.

1.2. Error in numerical simulations

It is useful to first review the various sources of error in numerical simulations. The first error source arises when a mathematical model is formulated for a given physical problem: this is known as the modelling error. The second error arises upon discretisation of this mathematical model, for example using the finite element method or meshfree methods. Finally, numerical error is incurred because of the finite precision of computers and round off errors. In this paper, we focus on the second source of error, namely discretisation error. We therefore assume that the model we use is descriptive of reality, i.e. we are solving the right problem, and we ask ourselves the question whether “we are solving the problem right”, in other words, correctly.

*Corresponding author:
Tel.: (+352) 621 131 048
Fax: (+352) 46 66 44 3567
Email address: stephane.bordas@uni.lu (Stéphane Bordas)
The main difficulty in answering this question comes from the fact that an exact solution, to which the numerical solution could be compared, is generally not available. Different approaches exist to address this problem, which are reviewed in the literature, see e.g., [4, 8, 9]. Simple methods available in practice to indicate the error distribution can be categorised into two classes: recovery-based and residual-based.

The first class of indicators assumes that the exact solution (of stresses) is smooth enough (at least locally). They rely on the construction of an “improved” numerical solution from the raw numerical solution, to which the raw numerical solution can be compared. Where these two solutions are significantly different (above a certain threshold), the error level is high and the mesh should be refined, and where these two solutions are close together, the mesh can be kept unchanged or coarsened. This idea was proposed by Zienkiewicz and Zhu in [10], and its asymptotic convergence to the exact error is studied in [11, 12].

The second class of indicators relies on the computation of the residual of the governing equations within each computational cell, typically each finite element. These “residual-based” error indicators lead to mesh refinement where the solution leads to large residuals, and keep the mesh constant or coarsen it where the element residuals are relatively small, compared to a given tolerance. These estimates were first proposed by Babuska and Rheinboldt in [13].

Based on these local error estimators, mesh refinement methodologies can be devised to derive mesh adaptation, see e.g. [9] for a comprehensive presentation. This requires two key ingredients: a marking strategy that decides which elements should be refined, and a refinement rule that defines how the elements are subdivided. For element marking, we use the maximum strategy, see Section 3 for details. Other strategies, such as bulk/equilibration strategy or percentage strategy can also be used.

1.3. Simulation of percutaneous operations

Needle-based percutaneous procedures are an important part of modern clinical interventions such as biopsy, brachytherapy, cryotherapy or regional anesthesia. The success of these procedures depends on good training and careful planning to optimize the path to the target, while avoiding critical structures [14]. In some instances the procedure can also be assisted by robotic devices. Unfortunately, natural tissue motion (due to breathing, for instance), and deformation (due to needle insertion) generally lead to incorrect or inefficient planning [14]. To address these issues, one must rely on an accurate simulation of needle insertion. For most problems, computational speed is also very important, since the simulation is at the core of an optimization algorithm (for the needle path) or a robotic control loop.

The main works on needle insertion (see the survey by [15]) propose to model the interaction between the needle and soft tissues using FEM. In the various methods proposed in the literature, three main research directions have been followed: soft tissue model, flexible needle model and needle-tissue interactions. The needle model is usually not an issue, both in terms of modeling choice and computational burden. For instance, in [16], authors report computation times of a few milliseconds for a FEM needle model composed of 50 serially-linked Timoshenko beam elements. Soft tissue models are usually based on FEM, and rely on linear or non-linear constitutive laws [15].

A large body of work covers the modeling and simulation of soft tissue deformation, even under real-time computation constraints. But overall, the interaction model between the needle and tissue remains the main challenge. It combines different physical phenomena, such as puncturing, cutting, sliding with friction and Poynting’s effect. To capture the essential characteristics of these interactions, existing methods usually rely on experimental force data and remeshing techniques in order to align nodes of the FEM mesh with the needle path. In [16], a constraint-based approach, avoiding remeshing, was used to simulate needle-tissue interactions. However, the simulations did not account for realistic anatomical details. In addition, Misra et al. [17] showed that needle steering, which occurs when using asymmetric needle tips, can be modeled using microscopic observations of needle-tissue interactions.

Unfortunately, if no assumption can be made about the region of the domain where the needle will be inserted, simulations involving very detailed meshes become very slow, which is a real issue in the context presented above. Real-time simulation of needle insertion is thus an unsolved problem whose solution requires tackling a number of difficulties:

- developing needle-tissue models
• using these models within discrete approaches like FEM, mesh-free methods, or others
• accelerating the simulation (advanced hardware, model order reduction)
• validating the needle-tissue interaction model combined with discrete solution (are we solving the right problem?)
• verifying the discrete solution, i.e. controlling the discretization error associated with the discrete model (are we solving the problem right?)

In this paper, we propose to focus on the last point above, with the aim to model needle-tissue interactions using an adaptive meshing strategy driven by simple a posteriori error estimation techniques. Similarly to [16], we do not require the mesh to conform to the needle path. Mesh subdivision is only introduced as a means to improve the accuracy of the needle-tissue interactions. Our mesh refinement method is guided by the stress/energy error estimate resulted from the needle-tissue interaction and imposed boundary conditions: elements of the mesh are subdivided when a numerical error threshold is reached. The subdivision process is completely reversible, i.e. refined elements are set back to their initial topology when refinement is no longer needed. Our refinement approach does not rely on a usual octree structure, thus allowing a variety of subdivision schemes that are well suited for needle insertions, as detailed in Section 3. Using this approach, interactive computation times can be achieved while detailed tissue motion near the needle shaft or tip can be computed. This opens new possibilities for fast simulations of flexible needle insertion in soft tissues. We illustrate the convergence study of the adaptive refinement scheme and some of the possible scenarios in Section 5.

2. Model and discretization

In this section, we describe the model and the discretization approach, which are used for needle and soft tissue interaction.

2.1. Problem statement

We model both, the tissue and the needle, as dynamic deformable objects. Thus, they can be regarded as dynamic elastic solids, and the governing equations of the model are formulated as follows. Let us consider a solid object with domain Ω and its boundary Γ, that is subjected to a traction \bar{t} on $\Gamma_t \subset \Gamma$, and an imposed displacement \bar{u}, which is effected on $\Gamma_u \subset \Gamma$, see Figure 1a. We assume $\Gamma_t \cap \Gamma_u = \emptyset$. The problem is to seek

![Figure 1: A body Ω subjected to a traction \bar{t}, a body force b, and an imposed displacement \bar{u} (a); Simplified illustration of FEM discretization (b).](image-url)
an unknown displacement field u such that it satisfies the following governing equation set

$$\text{div } \boldsymbol{\sigma} + \boldsymbol{b} + \lambda = \rho \ddot{u} \quad \text{in } \Omega \tag{1a}$$

$$\epsilon = \frac{1}{2} (\text{grad } u + (\text{grad } u)^T) \tag{1b}$$

$$\boldsymbol{\sigma} = f(\epsilon, \nu) \tag{1c}$$

$$\boldsymbol{\sigma} \cdot \boldsymbol{n} = \bar{t} \quad \text{on } \Gamma_t \tag{1d}$$

$$u = \bar{u} \quad \text{on } \Gamma_u \tag{1e}$$

where $\boldsymbol{\sigma}$ is the second order Cauchy stress tensor, \boldsymbol{b} is the body force vector, ρ is the mass density, ϵ is the strain tensor, (\cdot) denotes the partial derivative with respect to time, \boldsymbol{n} denotes the outward unit normal vector on Γ_t, and λ denotes the contact force between the needle and the tissue. In the above, (1a) is the equilibrium equation, (1b) is the kinematic equation, (1c) is the constitutive equation that expresses the relation between stress and strain tensors with the so-called internal variables $\nu = (\nu_1, \nu_2, \ldots, \nu_n)$, and (1d) and (1e) are the Neumann and Dirichlet boundary conditions, respectively. Equation (1a) is the strong form of the governing system of equations for solids. A weak form of this equation for FEM can be derived by employing Hamilton’s principle (an energy principle), see e.g., [18] or weighted residual method [19].

During the needle insertion, three types of constraints are defined, see Figure 2. Coulomb’s friction law is used to describe frictional contacts within these three types of constraints. First, a puncture constraint is defined between the needle tip and the tissue surface. This constraint satisfies the Kuhn-Tucker condition in the direction n (normal to the tissue surface)

$$\delta_n \geq 0, \quad \lambda_n \geq 0, \quad \delta_n \cdot \lambda_n = 0, \tag{2}$$

where δ_n denotes the distance between the needle tip and the tissue surface in the direction n, and λ_n denotes the contact force in that direction. Let λ_{n0} represent the puncture strength of the tissue. The Kuhn-Tucker condition expresses that the contact force only exists when the needle tip is in contact with the tissue surface. When the contact force is higher than a threshold (puncture strength of the tissue)

$$\lambda_n > \lambda_{n0}, \tag{3}$$

the needle can penetrate into the tissue. In the tangent direction t, Coulomb’s friction law is considered in order to take into account the stick/slip between the needle tip and tissue surface

$$\lambda_t < \mu \lambda_n \quad (\text{stick}) \tag{4}$$

$$\lambda_t = \mu \lambda_n \quad (\text{slip}),$$

where μ denotes the friction parameter.

Second, a needle tip constraint is defined at the tip of the needle as soon as it penetrates into the tissue. Depending on the relationship between the contact forces in the normal direction n (along the needle shaft)
and in the tangent direction \(t \) (see Figure 2), the needle tip can cut and go through the tissue or not
\[
\lambda_n < \mu \lambda_t + \lambda_{n0} \quad \text{(stick)}
\]
\[
\lambda_n \geq \mu \lambda_t + \lambda_{n0} \quad \text{(cut and slip)}
\]

Finally, needle shaft constraints are defined along the needle shaft so that the needle shaft is enforced to follow the insertion trajectory created by the advancing needle tip. Again, the Coulomb’s friction law is applied to these constraints to represent the stick and sliding contact between the tissue and the needle shaft
\[
\lambda_n < \mu \lambda_t \quad \text{(stick)}
\]
\[
\lambda_n = \mu \lambda_t \quad \text{(sliding)}
\]

2.2. Spatial and temporal discretization

On our governing equations, we first perform spatial discretization, which is then followed by temporal discretization.

2.2.1. Space discretization

Without taking into account the contact forces (for the sake of simplicity), multiplying (1a) by the virtual displacement \(v^* \) that satisfies the Dirichlet boundary condition, and integrating over the volume \(\Omega \), the weak form of the equilibrium equation (1a) is obtained as
\[
\int_{\Omega} v^{*T} \rho \ddot{u} \d\Omega + \int_{\Omega} \epsilon(v^*)^T \sigma \d\Omega = \int_{\Omega} v^{*T} b \d\Omega + \int_{\Gamma_t} v^{*T} \bar{t} \d\Gamma \quad (7)
\]

The basic idea of FEM is to discretize the domain \(\Omega \) into finite elements \(\Omega_e \), \(e = 1, 2, \ldots, N_e \), by \(N_n \) nodes, as depicted in Figure 1b. Inside element \(\Omega_e \), the displacement as well as the virtual displacements are approximated as a combination of nodal displacements \(u_e \) and virtual displacement parameters \(u^*_e \) via shape functions \(N \)

\[
u(x) = N_e(x)u_e \quad (8a)
\]
\[
v^*(x) = N_e(x)u^*_e \quad (8b)
\]

Substituting (8a) and (8b) into the kinematic equation (1b), the strain inside the element \(\Omega_e \) as well as the strain due to virtual displacement \(v^* \) are given by
\[
\epsilon(u) = B_e u_e \quad (9a)
\]
\[
\epsilon(v^*) = B_e u^*_e \quad (9b)
\]

where \(B_e = D_e N_e \), with \(D_e \) the matrix of differential operators, is the strain-displacement matrix of element \(\Omega_e \).

Before proceeding further, we introduce the mass matrix \(M_e \) and the stiffness matrix \(K_e \)
\[
M_e = \int_{\Omega_e} N^T_e \rho N_e \d\Omega, \quad K_e = \int_{\Omega_e} B^T_e E B_e \d\Omega. \quad (10)
\]

The damping matrix \(C_e \) is approximated from the mass and stiffness matrices using Rayleigh damping as
\[
C_e = r_M M_e + r_K K_e, \quad (11)
\]

where \(r_M, r_K \) are Rayleigh mass and stiffness constants. The integral of the weak form (7) over \(\Omega \) is now computed as the sum of integrals over element domains \(\Omega_e \). Noting that the virtual displacement \(v^* \) is arbitrary, and taking into account the direct damping, we obtain the discrete problem of the element \(e \)
\[
M_e \ddot{u}_e + C_e \dot{u}_e + f_e(\sigma) = f^e_{ext}, \quad (12)
\]
where

\[f_e(\sigma) = \int_{\Omega_e} B_e^T \sigma \, d\Omega, \]
(13)

\[f_{e\text{ext}} = \int_{\Omega_e} N_e^T b \, d\Omega + \int_{\Gamma_e} N_e^T \bar{t} \, d\Gamma. \]
(14)

In this paper, the material is considered purely linear elastic, isotropic, and the constitutive relation (1c) is expressed directly as \(\sigma = E \epsilon \), with \(E \) the fourth-order stiffness tensor. Equation (13) reads

\[f_e(\sigma) = \int_{\Omega_e} B_e^T \sigma \, d\Omega = \int_{\Omega_e} B_e^T E \epsilon_e \, d\Omega = K_e \cdot \epsilon_e = K_e \cdot (x_e - x_{0e}). \]
(15)

Here \(x_e \) and \(x_{0e} \) denote the current and initial position of the element \(e \), respectively.

However, using Equation (15) results in inaccuracy for large rotations problems observed by artificial inflate deformation of the elements. To overcome this, Felippa et al. [20] decomposed the deformation gradient of the element into the rigid and deformation parts, and the element nodal internal force becomes

\[f_e = R_e K_e (R_e^T x_e - x_{0e}), \]
(16)

where \(R \) stands for the element rotation matrix of the element local frame with respect to its initial orientation, being updated at each time step. Using this corotational formulation results in no visual artifacts.

The global mass, stiffness and damping matrices of the system can then be assembled from the element ones, and Equation (12) can be rewritten to a global system equation as

\[M \ddot{u} = f(x, v), \]
(17)

where \(u = \ddot{u}, x, v = \dot{u} \) are the acceleration, position and velocity vectors, respectively, and \(f(x, v) = f_{e\text{ext}} - K u - C v \) represents the net force (the difference of the external and internal forces) applied to the object.

In our simulations, a diagonally lumped mass matrix is employed, and the stiffness matrix \(K \) is computed based on the co-rotational FE formulation described above which allows large rotations for both, needle as well as tissue. For higher accuracy of the computed strain field, the soft tissue domain is discretized using hexahedral elements. To avoid the complex issue of generating an exact hexahedral mesh of the domain, we use a mesh that does not conform to the boundary of the domain, as in Immersed Boundary Method [21]. The needle, on the other hand, is modeled using serially-linked beam elements, as in [16]. In this case, each node of the needle has 6 degrees of freedom (3 translations and 3 rotations), while the tissue model only uses 3 degrees of freedom per node.

Since the FEM formulation is based on the discretization of the physical domain, it naturally introduces the discretization error in the result. To control this error source, in Section 3 we present an adaptive refinement scheme.

2.2.2. Time discretization

For temporal discretization, we use an implicit backward Euler scheme [22], which is described as follows

\[\dot{u}_{t+\tau} = \dot{u}_t + \tau \ddot{u}_{t+\tau} \]
(18a)

\[u_{t+\tau} = u_t + \tau \dot{u}_{t+\tau}, \]
(18b)

where \(\tau \) denotes the time step. Inserting Equation (18) into Equation (17) gives the final discrete system

\[\left(M - \tau C - \tau^2 K \right) \dot{v} = \tau f(x^I, v^I) + \tau^2 K v^I \]
(19)
where $\mathbf{dv} = v_{t+\tau} - v_t$.

After solving (19) for \mathbf{dv}, the position and velocity are updated for needle and tissue as

$$
\begin{align*}
\mathbf{v}_{t+\tau} &= \mathbf{dv} + \mathbf{v}_t \quad (20a) \\
\mathbf{x}_{t+\tau} &= \mathbf{x}_t + \tau \mathbf{v}_{t+\tau} \quad (20b)
\end{align*}
$$

2.3. Constraint enforcement for needle-tissue interaction

To take into account the needle-tissue interaction when they are in contact, a constrained dynamic system is solved for the needle and the tissue. Equation (19) then becomes

$$
\mathbf{Adv} = \mathbf{b} + \mathbf{J}\lambda,
$$

(21)

where λ denotes Lagrange multipliers representing the interaction forces between the needle and the tissue, and \mathbf{J} provides the direction of the constraints. Different types of constraints between needle and tissue are used, and solving their interaction is detailed in Section 4.

3. Error estimate and adaptive refinement

To achieve faster and more accurate FEM simulations, different adaptive techniques have been proposed in the literature. Octree-based approaches [23] are the most common, but the refinement procedure is limited to cubic elements which are recursively subdivided into eight finer elements. To overcome this limitation, more generic remeshing techniques [24, 25, 26] have been proposed. However, they are complex to implement, and may lead to ill-shaped elements. Our template-based refinement algorithm is designed to be independent of the type of element (tetrahedra, hexahedra, others), and produces a high quality mesh (thanks to the well-shaped elements of the predefined template).

Starting with an initial, relatively coarse mesh (as required to achieve real-time simulation), a criterion based on a posteriori error estimate is evaluated to drive the local refinement. The elements where the stress increases, i.e. $d\sigma/dt > 0$, are considered for refinement, and the elements where the stress decreases, i.e. $d\sigma/dt < 0$, are taken to a lower refinement (coarsening) level. We define the approximate error of an element Ω_e as

$$
\eta_e = \sqrt{\int_{\Omega_e} (\epsilon^h - \epsilon^s)^T(\sigma^h - \sigma^s)d\Omega},
$$

(22)

which is the energy norm of the distance between the FEM solution (denoted by h) and an improved solution (denoted by s) obtained by the Zienkiewicz-Zhu smoothing procedure [10]. Among the elements with increasing stress, only those elements are subdivided (refined) where the error exceeds the predefined threshold. Similarly, among the elements with decreasing stress, only those elements are coarsened where the error is smaller than the above threshold.

3.1. Zienkiewicz-Zhu error estimate

Using the superconvergent patch recovery (SPR) procedure [10], the smoothed stress field σ^s is recovered from the stresses computed at the element center. The idea of this technique is based on the fact that the stress and strain at the superconvergent points (at element center in the case of linear hexahedral elements) are accurate with higher order than at the element nodes, and these values are employed to recover the nodal stress and strain within the least squares sense. A 2D representation of a patch of 8 hexahedral elements is shown in Figure 3. For each component σ^h_j of the FEM solution σ^h, the nodal recovered stresses are computed by defining a polynomial interpolation within the element patch as

$$
\tilde{\sigma}^s_j = \mathbf{P}_a \cdot \begin{bmatrix} 1 & x & y & z & xy & yz & xz & xyz \end{bmatrix}^T \begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 \end{bmatrix}^T.
$$

(23)
Let $P_k \equiv P(x_k, y_k, z_k)$. To determine the unknowns a_j we minimize, for 8 sampling points k of an element patch,

$$\Pi = \sum_{k=1}^{8} \left[\sigma_j^b(x_k, y_k, z_k) - P_k a_j \right].$$

This minimization results in finding a_j by

$$a_j = A^{-1}b$$

where

$$A = \sum_{k=1}^{8} P_k^T P_k \quad \text{and} \quad b = \sum_{k=1}^{8} P_k^T \sigma_j^b(x_k, y_k, z_k)$$

Once a_j is available, the nodal recovered stress values are obtained by simply employing Equation (23) with P evaluated at the corresponding node. \(^1\)

\[\text{Figure 3: The smoothed gradient is obtained from an element patch.}\]

3.2. Element marking strategy

After obtaining error distribution across all the elements, we employ the maximum strategy to select those elements which must be refined for the next level mesh. In this strategy, only those elements are refined where error (see Equation (22)) is higher than certain threshold. Let $\eta_M = \max_e \eta_e$, where η_e is defined in Equation (22). We mark an element for refinement if

$$\eta_e \geq \theta \eta_M.$$

Other marking strategies, such as bulk/equilibration strategy, or percentage strategy, can also be used. However, the maximum strategy described above is the cheapest among all, and hence, it is preferred for our use. In the maximum strategy, a large value of θ leads to small number of elements marked for refinement, and small value of θ leads to large number of elements marked for refinement. In our studies presented in Section 5, we set $\theta = 0.3$.

\(^1\)Similar to the displacements, the recovered stresses σ^r can also be obtained using element shape functions $\sigma^r = N \sigma^*$.
3.3. Template-based adaptive h-refinement

Once the refinement criterion is satisfied within an element, the element is replaced by several elements according to a predefined template. The template is simply a set of nodes and an associated topology, defined using an isoparametric formulation. The template nodes are added by using their natural coordinates. The position x_j, in Cartesian coordinates, of the new node j is defined as $x_j = x_i \xi^j_i$, where the Einstein summation convention is applied on the nodes i of the removed element ($i = 1, 2, \ldots, 8$ for hexahedral elements). The shape function ξ^j_i is computed from the barycentric coordinates of template node j with respect to the node i. The procedure is summarized below:

1. Remove the element to be refined
2. Add template nodes and then template elements using the element shape functions
3. Update the topology of the global mesh
4. Compute stiffness matrix of new elements
5. If needed, update the mass and damping matrices

It is worth mentioning that if, after refinement, a new element fulfills the refinement criterion, it can be refined again, using the same predefined template. This results in a multi-resolution mesh (see Figure 4). Conversely, if the coarsening criterion is satisfied in already refined elements, the coarsening procedure is applied by simply removing respective fine elements, and updating the associated matrices.

3.4. T-junction handling

Since elements are refined by using templates, regardless of their neighboring elements, some T-junctions (incompatible nodes or hanging nodes) are generated. To avoid discontinuities at the T-junctions during the simulation, these nodes need to be handled in a special way, in which T-junction nodes are considered as slave of other independent DOFs (master). One of the possible options is to use Lagrange multipliers, but this approach increases the total number of DOFs, and usually leads to ill-conditioned systems. In our approach, we follow the method proposed by [27], which considers only the reduced system (without T-junctions) when solving for the new positions. Let T denote the transformation matrix from the reduced system to the full one (with T-junctions). The matrix T contains the barycentric coordinates of the T-junctions (slaves) with respect to their masters, and contains 1 for all other normal DOFs. The reduced system matrix A_r is then computed from the full system matrix A_f as

$$A_r = T^T A_f T.$$

(28)
The nodal forces in the reduced space is computed from the full space as \(f_r = T^T f_f \). The reduced system \(A_r \text{dv}_r = f_r \) is solved to find \(\text{dv}_r \), the difference of velocity between current and previous time step. Once \(\text{dv}_r \) is available, the difference of velocity in the full space are easily deduced as \(\text{dv}_f = T \text{dv}_r \). The latter is employed to update the new position and velocity of the object as in Equation (20).

Assuming we are using a non-linear constitutive law (e.g. hyperelastic) or a co-rotational FE formulation, the system matrix needs to be updated at each time step. Consequently, the local updating of the topology has a very limited impact on the computation. The main overhead comes from the T-junction handling, but it is somewhat compensated by the reduced dimensions of the linear system to be solved (although the reduced matrix is denser than the initial one). Our experience has shown that if we consider that about 10% of the mesh elements are subdivided, approximately 20% of the nodes in the resulting mesh are T-junctions. Obviously, the number of T-junctions depends strongly on the template mesh used by the refinement, and also on the fact that the elements are subdivided locally within one or several regions.

4. Needle-tissue interaction algorithm

To model the interaction of needle and tissue, we consider two different constraints: penetration (puncture) and sliding [16]. To avoid remeshing when modeling needle-tissue interaction, we use the same constraints based approached as described in [16]. However, unlike [16], we solve the constrained system differently. Before entering the tissue, the needle-tissue constraint is only created when the needle tip is in contact with the tissue surface. This penetration constraint is represented mathematically as \(P(x_n, x_t) \geq 0 \), where \(x_n \) and \(x_t \) stand for the position of the needle, and tissue, respectively. Immediately after entering the tissue, sliding constraint between the needle and tissue is created along the needle trajectory as \(S(x_t) = 0 \). When friction is considered, both \(P \) and \(S \) are nonlinear. The constraints \(P \) and \(S \) between the tissue (denoted by subscript 1) and needle (denoted by subscript 2) are expressed through the global coordinate system \(J_1 \) and \(J_2 \) using Lagrange multipliers \(\lambda \) as follows

\[
\begin{pmatrix}
A_1 & J_1^T \\
0 & A_2 & J_2^T \\
J_1 & J_2 & 0
\end{pmatrix}
\begin{bmatrix}
\text{dv}_1 \\
\text{dv}_2 \\
\lambda
\end{bmatrix}
= \begin{bmatrix}
b_1 \\
b_2 \\
0
\end{bmatrix},
\]

(29)

where \(A_1 \) and \(A_2 \) are the system matrices for the soft tissue and needle, respectively. In the local coordinate system attached to the needle, constraints between needle and tissue are only expressed in two directions orthogonal to the needle shaft, resulting in a needle-tissue sliding constraint. The expressions of these constraints in the global coordinate system \(J_1 \) and \(J_2 \) are then built by transforming the local constraint expressions from the local coordinate system to the global one. However, formulating the problem as (29) leads to a non positive definite global matrix, which makes the system challenging to solve. An alternative approach, as proposed in [14, 16], is to solve the interaction problem in three steps: predictive motion (no interaction constraints), constraint solving, and corrective motion, which requires the computation of matrix inverse \(A_1^{-1} \) and \(A_2^{-1} \). This approach is time consuming, especially for large systems. Unlike this method, we solve the constrained problem iteratively by using the augmented Lagrangian method [28]

\[
\begin{align*}
(A + J^T W J) \text{dv}^{k+1} &= b - J^T \lambda^k \\
\lambda^{k+1} &= \lambda^k - W J \text{dv}^{k+1},
\end{align*}
\]

(30a)

(30b)

where \(W \) is the penalty weight matrix with finite values. The advantage of this method is that the exact solution of the needle-tissue interaction can be obtained, as compared to the penalty method (see e.g. [29]), and no additional DOFs are needed, as compared to the classical Lagrange multiplier method [30]. A critical feature of this approach is that the system matrix in (30a) is positive definite, therefore iterative solvers, such as the conjugate gradient, can be used efficiently. It is worth stressing that using the augmented Lagrangian method for solving needle-tissue interaction, combined with the T-junction handling in the tissue, is straightforward. Indeed, as mentioned above, it is sufficient to solve (30a) in the reduced space, and \(\text{dv}^{k+1} \) is easily computed from the reduced solution.
5. Results and discussions

To demonstrate the efficiency of our method, we present several numerical studies. We first present the convergence of the stress error on a typical L-shaped domain. The motivation for this test is because of its localized nature, i.e. stress is concentrated at the corner of the domain, which mimics the localized scenario of needle insertion. To demonstrate the computational advantage of adaptive refinement over uniform refinement, we also present the computational time for this problem. Then, to point out the benefits of a local mesh refinement in terms of displacement field around the needle shaft, we study a needle insertion scenario with friction. Finally, a more complicated scenario is simulated i.e. insertion of a needle in a liver which is undergoing breathing motion. In our simulations, the needle and soft tissue follow a linear elastic constitutive law, associated to a co-rotational FE formulation.

5.1. Convergence study

To show the advantage of error-controlled adaptive refinement scheme, as compared to the uniform mesh refinement, a convergence study is performed on a 3D L-shaped domain. As shown in Figure 5, the L-shaped domain is clamped at the right boundary, and simply supported in the vertical direction at the top boundary. The dimension is set to \(L = 4 \) and the thickness of the domain is \(L/2 = 2 \). Young’s modulus, and Poisson’s ratio of the tested material are \(1 \times 10^3 \), and 0.3, respectively. The domain is subjected to a uniformly distributed traction force on the left surface boundary.

Starting with the mesh having \(8 \times 8 \times 4 \) hexahedral elements (excluding the \(4 \times 4 \times 4 \) corner elements), two types of refinements are performed. The first one, called uniform refinement, consists of subsequently subdividing every hexahedral element in to 8 smaller elements. In the second approach, called adaptive refinement, only those elements are refined (subdivided in to 8 smaller elements) which satisfies the marking condition (27).

We define the relative error \(\eta \) as

\[
\eta = \frac{\sqrt{\sum_{e=1}^{N_e} \int_{\Omega_e} (\epsilon^h - \epsilon^s)^T (\sigma^h - \sigma^s) d\Omega}}{\sqrt{\sum_{e=1}^{N_e} \int_{\Omega_e} (\epsilon^h)^T \sigma^h d\Omega}}.
\] (31)

In Figure 6, we show the plots of the relative error versus the number of DOFs for uniform and adaptive refinement. We see that for the uniform refinement, the relative error \(\eta \) converges with a slope of 0.21, which corresponds to the theoretical slope of 2/9 for singular problems in 3D. By comparison with the
uniform refinement, the adaptive refinement converges with a higher slope (0.31). Clearly, to achieve certain expected error of the simulation, the adaptive refinement needs fewer DOFs than the uniform refinement.

To demonstrate the performance of adaptive (local) refinement in terms of computational time, as compared to uniform (full) refinement of the mesh, with the same expected relative error $\eta = 8\%$, we again studied the L-shaped domain problem. The result is reported in Table 1. The local refinement decreases the number of DOFs by a factor 5.9 (7473 vs. 44064) associated with a computational speed-up of 16× (736.41 ms vs. 12140.8 ms).

<table>
<thead>
<tr>
<th></th>
<th>DOFs</th>
<th>TC</th>
<th>MS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full refinement</td>
<td>44064</td>
<td>x</td>
<td>12140.8</td>
<td>12140.8</td>
</tr>
<tr>
<td>Local refinement</td>
<td>7473</td>
<td>319.24</td>
<td>417.17</td>
<td>736.41</td>
</tr>
</tbody>
</table>

Table 1: Computational time (in 10^{-3} s). TC: Topological Changes, MS: System Matrix Solve.

In view of above observations, it is an essential argument to support the employment of adaptive refinement scheme while limiting the discretization error in real-time simulations.

5.2. Impact of local mesh refinement on displacement field

Figure 7: Variation of tissue displacement resulting from friction during needle insertion, measured along a vertical line located at the needle tip. (a) The un-refined mesh; (b) adaptive refinement using an anisotropic template $2 \times 3 \times 3$; (c) adaptive refinement using an isotropic template $3 \times 3 \times 3$; and (d) full refinement. The graph (e) shows the benefits of the anisotropic refinement.
We now present the results of a simulation of needle insertion into a homogeneous 3D tissue model. For this study, we consider the Young’s modulus of 10^8 for the needle, and 10^3 for the tissue, whereas the Poisson’s ratio is taken as 0.4 for both. The friction coefficient between the needle and the tissue is set to 0.9. The displacement field due to frictional interactions with the needle, viewed from the xy plane of the tissue, is shown in Figure 7.

It is shown (by the nonlinear variation of the displacement field in the vicinity of the needle) that when the mesh is adaptively refined near the needle shaft, the needle-tissue interaction is captured as good as in the case of full refinement (see Figure 7d). Indeed, closer the position of the needle, higher the obtained displacement field. Conversely, when a coarse element is used, and is not refined during the simulation, the above behavior is not reproduced within the element (Figure 7a). It is important to point out that the refinement using anisotropic template, as in Figure 7b, is very relevant since it generates less DOFs than using the isotropic template (Figure 7c), while still catching the nonlinear displacement field.

5.3. Impact of local mesh refinement on needle-tissue interaction

In order to gain insight into the nonlinear behavior of the needle-tissue interaction around the needle shaft, and to exhibit the effect of the adaptive refinement on a trade-off between computational time and precision, a needle insertion simulation into a phantom tissue test is carried out, see Figure 8. For this study, we consider the Young’s modulus of 50 MPa for the needle, and 10 MPa for the tissue, whereas the Poisson’s ratio is taken as 0.4 for the tissue, and 0.3 for the needle, respectively. Again, a linear elastic model based on corotational formulation is employed for the needle as well as the tissue. The dimension of the tissue is $4 \times 2 \times 2$ cm. The needle length and radius are of 3.2 cm and 0.1 cm, respectively.

Three meshing schemes are employed: a coarse mesh with resolution $10 \times 5 \times 5$ nodes, a fine mesh with resolution $20 \times 10 \times 10$ nodes and an adaptive mesh (starting with the coarse mesh $10 \times 5 \times 5$ nodes and adaptively refining the mesh during the simulation). Within the adaptive meshing scheme, the mesh refinement is again piloted by the error estimate described in Section 3.

Figure 8: Schematic representation of needle insertion simulation into a phantom tissue. The phantom tissue is clamped at the right surface.

To investigate the sensibility of the needle-tissue interaction parameters (frictional coefficient and puncture strength) on the resulting mesh adaptation, and thus on computational output, two scenarios are studied. The first concerns varying the puncture strength σ_{n0} parameter (0 N, 10 N, and 20 N), while keeping the same frictional coefficient $\mu = 0.5$ between the tissue and the needle shaft. The second is dedicated to study the influence of the frictional coefficient by setting it to 0.1, 0.3 and 0.5, while keeping the puncture strength unchanged ($\sigma_{n0} = 10$ N). Within these two scenarios, the frictional coefficient on the tissue surface is set to 0.8.

Figure 9 shows the plots of the integrated interaction force along the needle shaft versus the displacement of the needle tip for the first scenario. The second scenario is exhibited in Figure 10.

It shows that when the contact force between the needle tip and the tissue surface is higher than the tissue puncture strength, the needle penetrates into the tissue. Right after this penetration event, a relaxation phase can be observed that induces a decreasing force at the needle bases. Thereafter, it is observed that as the needle moves forward, the interaction force increases due to the increasing frictional force along the needle shaft (which is directly proportional to the insertion distance). Only when the contact force at the needle tip is greater than the cutting strength of the soft tissue, the needle cuts the tissue and continues going ahead. Immediately after this cutting action, the relaxation phase is observed anew. This behavior is
Figure 9: Comparison of needle-tissue interaction forces along the needle shaft within two cases: without refinement (with different mesh resolutions) and with adaptive refinement. The penetration strength is varied while keeping the same frictional coefficient $\mu = 0.5$ between the needle shaft and the soft tissue.

Figure 10: Comparison of needle-tissue interaction forces along the needle shaft within two cases: without refinement (with different mesh resolutions) and with adaptive refinement. The frictional coefficient between the needle shaft is varied while keeping the same penetration strength (10 N) at the tissue surface.
periodically observed during the needle insertion. These observations are clearly shown in Figure 11a, which is obtained by zooming in Figure 9b. A typical behavior with distinguished phases is presented in Figure 11b.

![Figure 11](image)

Figure 11: (a) Puncture, cutting and relaxation behaviors are shown by a zoom-in plot from Figure 9b. (b) The typical behavior is shown in phases. Phase (1): The needle is puncturing the tissue surface. Phase (2): Just after the penetration event, the relaxation occurs. Phase (3): The interaction force increases due to the fact that frictional force increases with insertion distance. When the needle tip has cut the tissue to advance forward, the relaxation occurs again.

It is observed that under mesh refinement the resulting global behavior of needle-tissue system is less stiff. This is explained by the fact that beneath mesh refinement, a greater displacement field is obtained, which results from the needle-tissue interaction (as also observed in Section 5.2). It is also shown that using the adaptive refinement scheme, the interaction needle-tissue behavior is close to those when using a fine mesh (see Figure 9). As can be seen in Figure 12, an interesting observation is that the number of DOFs in the adaptive refinement simulation is significantly fewer than that of using the fine mesh. This obviously results in an important gain in terms of computational time.

![Figure 12](image)

Figure 12: Number of DOFs during the needle insertion of the simulation in Figure 9b.

It is seen from Figure 10 that the smaller the frictional coefficient is, the more the behavior of the adaptive refinement scheme differs from that of the simulation using the fine mesh. It aligns nicely with the fact that smaller friction force does not lead to mesh refinement around the needle shaft. Indeed, as seen in Figure 13, the refinement in the case of frictional coefficient $\mu = 0.1$ is mostly due to the penetration force at the tissue surface.
5.4. Application to liver

The method proposed in this paper is now applied to a liver model undergoing breathing motion, to mimic a typical case of radio-frequency ablation of a tumor. Induced by error estimate (27), the needle insertion and constraints applied to the liver lead to refinements in different regions. The initial mesh has 1179 DOFs. When the needle advances into the liver, combining with the motion of the liver due to breathing effect, the mesh is progressively refined to accurately take in to account the interaction of needle and liver. The maximum number of DOFs when the needle is completely inserted into the liver is 2961. And, when the needle is steadily pulled back, the mesh is then progressively coarsened until the needle is completely outside of the liver. Thereafter, the refinement process is now only due to the movement of the liver by breathing effect and imposed boundary conditions. The number of DOFs at this stage is 1509. By applying this adaptive refinement/coarsening procedure, it is not only guaranteed that the discretization error is fully controlled, but the computational cost is also kept as small as possible. Indeed, without adaptive remeshing procedure, the simulation runs at 35 FPS while the discretization error is 12%, whereas when the adaptive refinement is performed, it runs at 22 FPS while decreasing the discretization error to 6%.

In Figure 15a, we show the displacement of the needle base during the simulation. In Figure 15b, the needle-tissue interaction force during the simulation is shown. We consider different meshes for modeling the tissue. Both cases, uniform meshes (with different resolutions $6 \times 6 \times 6$, $9 \times 9 \times 9$, $12 \times 12 \times 12$, $18 \times 18 \times 18$), and an adaptively refined mesh, are employed.

It is observed that when the needle is outside the tissue, there is no interaction force between them. This is also observed when the needle is completely retracted from the step 200. When the needle penetrates into the tissue, this interaction force varies roughly like the variation of the needle base displacement during the simulation. It is clearly shown that the needle-tissue interaction depends strongly on the mesh used (especially if the mesh is coarse). Under mesh refinement, this interaction converges to a solution (see e.g. for the meshes $12 \times 12 \times 12$ and $18 \times 18 \times 18$). It reveals that even starting with the coarse mesh ($6 \times 6 \times 6$) but employing the adaptive refinement scheme, the needle-tissue interaction can be simulated more precisely (see Figure 15b).
6. Conclusion and perspective

This work has addressed the use of template-based error-controlled h-refinement in the context of real-time surgical simulations, in particular needle insertion where localized detailed displacement fields are needed. There are a number of factors which are concurrently involved in defining the “accuracy” of the surgical simulation. Our paper emanates from the observation that all work known to us in the area (simulation of needle-tissue interaction) has been looking at the above sources of error as a compounded, lumped, overall error, but that no work has been done at attempting to discriminate between modeling error (needle-tissue interaction) and discretization error (due to the use of approximation methods like FEM). However, it is impossible to validate the complete computational approach without being able to evaluate the discretization error.

The novelty of our paper is the use of local template-based adaptive mesh refinement (which is a generic and flexible concept) during needle insertion. The mesh refinement is driven by a posteriori estimate for the discretization error. Consequently, unlike all previous work in the field, our approach enables the rational control of the error associated with the acceleration of the simulation, which is necessary for clinical applications. As opposed to refining the mesh in an ad hoc fashion (without error control), and opposed to mix model and discretization error within one single compounded error measure, we are able to systematically discriminate between these error sources. As we use an implicit approach, we also control the error on the equilibrium equations, which is not the case in TLED formulations [31]. Using adaptive refinement schemes, we obtain similar results as conventional approaches but with faster computation times. We have also shown that the augmented Lagrangian method for needle-tissue interaction is relevant, especially for large problems, since it allows for fast convergence while correctly resolving the constraints.

This work can be seen as a first step to control the error associated with acceleration methods in needle insertion simulations, and to separate the error sources. Verification of the discrete scheme is guaranteed in our approach because the a posteriori estimate, which is used to drive mesh refinement, asymptotically converges to the exact error. Validation of the approach is indeed not considered, because we focus only
on one source of error (discretization). Whilst this is a limitation, we do believe that it is necessary to address such errors in order to devise accurate and clinically-accessible needle insertion simulators. Nevertheless, combining more robust and clinically relevant needle-tissue models with our approach is straightforward, and is planned for the future. This will provide a real-time simulation tool that is able to provide interactive rates as well as control the error occurring during the simulation, particularly for problems including localization such as cutting and needle insertion.

Acknowledgements

The first and last author are supported by the Fellowship of the last author as part of the University of Strasbourg Institute for Advanced Study (BPC 14/Arc 10138).

Stéphane P.A. Bordas and Satyendra Tomar also thank partial funding for their time provided by the European Research Council Starting Independent Research Grant (ERC Stg grant agreement No. 279578) RealTCut towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery.

Inria thanks for funding of European project RASimAs (FP7 ICT-2013.5.2 No610425).

URL http://dx.doi.org/10.1093/acprof:oso/9780199679423.001.0001
URL http://dx.doi.org/10.1090/S0025-5718-02-01402-3
URL http://dx.doi.org/10.1090/S0025-5718-02-01412-6
URL https://books.google.fr/books?id=MhgBMWVFV9UC
A. Pinelli, I. Z. Naqvi, U. Piomelli, J. Favier, Immersed boundary method for generalised finite volume and finite difference

D.-Y. Kwak, Y.-T. Im, Hexahedral mesh generation for remeshing in three-dimensional metal forming analyses, Journal

D. Koschier, S. Lipponer, J. Bender, Adaptive Tetrahedral Meshes for Brittle Fracture Simulation, in: V. Koltun, E. Sifakis

D. Burkhart, B. Hamann, G. Umlauf, Adaptive and Feature-Preserving Subdivision for High-Quality Tetrahedral Meshes,

C. Paulus, L. Untereiner, H. Courtecuisse, S. Cotin, D. Cazier, Virtual cutting of deformable objects based on efficient

URL http://www.jstor.org/stable/2005611

P. Papadopoulos, J. M. Solberg, Recent Advances in Contact Mechanics A Lagrange multiplier method for the fi-

K. Miller, G. Joldes, D. Lance, A. Wittek, Total Lagrangian explicit dynamics finite element algorithm for computing soft